Dam Removal Funding Symposium Washington, DC April 30 – May 1, 2024

Beth Styler Barry Director of Freshwater Programs The Nature Conservancy, NJ

Brenda Gail Bergman Northern Appalachians Freshwater Director

Decision-making for systems uplift.

- 1. Ecological Reasons (Miles opened, species present/potential, habitat uplift
- 2. People Reasons Socioeconomic, Public Safety, Flood Reduction
- 3. Apply an Equity Lens

	Gain	NCWC							Ţ	
Name	Miles	_tier	Height	Length	Hazard	Condition	Trout	EJTract	ElTribal	BarrierOw
Houvenkopf Club Dam	-1.0	-1	8	60	Unknown	Unknown	yes	no	yes	Private
New Jersey No Name # 24 Dam	36.0	1	14	750	Unknown	Dam breached	not recorded	no	no	State
Pleasant Valley Mill Dam	24.9	2	13	300	Unknown	Unknown	yes	no	no	Local governr
Franklinville Lake Dam	24.4	2	8	800	High	Poor	not recorded	no	no	Local governr
Hanover Lake Dam	28.4	2	9	400	Significant	Unknown	not recorded	no	no	Federal
Mt. Misery Dam	27.4	2	10	660	Low	Unknown	not recorded	yes	no	Private
Oakford Lake Dam	32.1	3	8	165	Low	Fair	not recorded	no	no	Local governr
Vincentown Mill Dam	38.1	3	12	400	High	Satisfactory	not recorded	no	no	Local governr
New Jersey No Name # 103 Dam	24.1	3	6	4200	Unknown	Unknown	not recorded	no	no	State land
Cranes Lake Dam	20.2	3	10	1050	Significant	Satisfactory	not recorded	no	no	Regional land
New Brooklyn Dam	25.1	3	9	212	Significant	Poor	not recorded	no	no	Local governr
Hamden Mill Pond Dam	57.4	4	4	100	Unknown	Dam breached	yes	no	no	State
Vliettown Dam	27.2	4	10	900	Unknown	Unknown	yes	no	no	Private
Clove River Dam	51.4	5	28	300	High	Fair	not recorded	yes	no	Local governr
Lake Cushetunk Dam	32.3	5	20	594	Significant	Fair	yes	no	no	Local governr
Sallys Pond Dam	5.6	8	15	250	High	Fair	yes	no	yes	State
Long Pine Pond Dam	0.6	10	16	410	Low	Unknown	yes	no	no	Federal
Bridgepoint Dam	0.0	20	15	660	Significant	Satisfactory	not recorded	no	no	Local governr
Total Potential Miles	455.2									
Total Potentail Cost	\$54M									

Barriers to Scaling: Technical Expertise

80 Project Manager Trainees40 Fish Passage Trainees18 Webinars Produced

Training, Coaching, Webinars

Path to Permitting: Unpacking Early Engineering Studies for Dam Removal Pro

CC

Path to Permitting: Unpacking Early Engineering Studies for Dam Removal Projects

Presented by: Michelle DiBlasio, Freshwater Restoration Manager, The Nature Conservancy (NJ)

Barriers to Scaling: Awareness

✓ **Targeted Outreach to** (Private) Landowners, Municipalities, Counties, FEMA, DOT)

Research - Incorporate flood analysis into decision making, specifically in EJ and/or overburdened communities

✓ **Research** - Scientific Data Collection (eDNA, freshwater mussels)

✓ Influence Policy

What is a Dam?

A dam is a manmade structure that spans ar impedes the flow of a river or other moving vaterway. They are built for many reasons including agricultural management, energy production and in previous times, even ice

When a dam is constructed, it instantly alter the riverscape, creating a still, lake-like impoundment upstream, and a turbulent an potentially dangerous pool at its base

Species that survive in a flowing-water habitat become displaced in the artificially manipulated environment, and invasive species often take over. Low-head dams especially also create a reational hazard. The water around then often appears to be calm and inviting to wimmers and anglers who may wade in and be overcome by an inescapably strong subsurface current. Kavakers and canoers inable to see a dam from upstream, may tumble over its edge into that same curren

HABITATS IMPEDED BY DAMS:

Migrating fish like shad

from reaching historic

fish that prefer warm

species mix

water, like carp, catfish and bass dominate the

spawning grounds. Sport

eels and salmon are blocked

Purple loosestrife (Lythrum alicaria), reed canary grass (Phalaris arundinacea) and othe invasive plants that grow on the riverbanks can take hold and push out the native vegetation hat supports local and migratory wildlife

reas below the dam ha too little sediment and are prone to erosion. The water appears calm but usually has a strong and angerous subcurrent the has earned these structures the nickname rowning machines.

made from concrete. When ney reach their lifespan of about 50 years, they have often degraded so much that they risk failure Maintenance costs fo antiquated dams ofter become untenable

w head dams can be tricky or kavakers and canoers to pot from upstream addlers unaware of the danger can fall over the dar and become caught up in he strong currents at its base. Too often they, and the esponders that try to help them, become casualties of the difficult conditions

The old river bed buried under sediment

moving water behind the dam builds up sedimen that fosters algae blooms and may hold contaminant from chemical runoff and natural decomposition. The warm, stagnant conditions are inhospitable to native quatic wildlife

s provide shade an

help to maintain cooler

Native plants like spicebus

caterpillars, and these indigenous species are less likely to be pushed out by the

(Lindera benzoin) provide food

and shelter for many creatures

such as spicebush swallowta

invasive species that tend to

proliferate in a dammed rive

water temperatures

nyasive aquatic plants like Eurasian watermilfoil, duckweed and waterchestnut thrive in th slow waters above the dam. Their fast growth blocks sunlight and can smother native plants.

What is a Waterfall?

When water flows vertically over one o more steep drops in a river or stream, it is called a waterfall. These natural geological features are created throug processes like erosion and glacial or ectonic movement, as well as in areas where the land varies in height such as o

Waterfalls form and recede extremely lowly on a geological timescale, and unlike man-made dams, do not cause sudden and dramatic changes in ecological systems.

NATURALLY FLOWING WATERFALL HABITATS

Native slimy sculpins (Cottus cognatus) thrive among rocky stream beds and are less likely to have to compete for resources ith invasive fish specie

and filter the water

Barriers to Scaling: Funding

Stepwise Funding
Insufficient support for early stages

Solutions:

1. More packaged funding would address:

- staffing constraints
- watershed scale coordination
- Efficient scoping and pre-feasibility

2. Better funding for early stages

Mechanism: Address bottlenecks – TNC Appalachians:

Scalable model of teams fully focused on dam removals.

Benefits:

- Improve labor, time, and cost efficiencies for all stages of dam removal
- Increase rate of shovel-ready projects and ability to plan at watershed scale through more systematic pre-feasibility work
- Address needs of groups who would like to advance dam removal but have insufficient labor

Mechanism TNC's Appalachians Program is advancing to address bottlenecks (con't)

3.) Design operating systems to deliver project management and engineering services

4.) Provides a mechanism for efficient, blended public-private dam removal funding

5.) TNC's Nature for Water Facility provides a successful model of such a mechanism

6.) Plans for the coming year: Develop a business case that includes: (1) targeted outcomes, (2) team arrangement, (3) capitalization/funding, (4) services/products on offer, and (5) systems.

Thank you.

Beth Styler Barry, New Jersey Director of Freshwater Program. Beth.stylerbarry@tnc.org

Brenda Gail Bergman Northern Appalachians Freshwater Director Brenda.bergman@tnc.org

