Upper Intrenchment Creek

DWM has implemented a nationally recognized Southeast Atlanta Green Infrastructure Initiative, treating over 10 million gallons a year.

This program has made positive impact in the watershed and the following recommendations are meant to build off this work.

Objectives:

1. Contextualize basin geography and infrastructure.
2. Contextualize community impacts and sensitivity to flooding.
3. Define relations of physical characteristics to community sensitivity.
4. Define the scale of volume in the overall study basin

Questions

1. Present opportunities for volume management in Public Realm
2. Present opportunity for volume management in Public/Private parcels
3. Present opportunities for an integrated approach within the Summerhill development
4. Summarize the aggregate impact of projects presented with DWM relief currently in place
5. Additional study and project opportunities
Upper Intrenchment Creek
Where Rivers are born

➢ Roughly 2,600 acres of Southeast Atlanta passes through Upper Intrenchment Creek and the Beltline before eventually entering into the combined sewer system

➢ ≈ 1.8 billion gallons per year
➢ ≈ 35 million gallon in 1” Event

➢ Intrenchment Creek is defined by sharp steep elevation changes in the upper basin and flatter lowlands.

➢ These characteristics promote high velocity erosive flows in the upper basin that slow down and accumulate into flooding before reaching the Beltline.
Upper Intrenchment Creek
Where Rivers are born

➢ Dense development and highway infrastructure in the upper basin overwhelm capacity in drainage infrastructure

➢ This prevents the localized flooding in the lowlands from entering the system, compounding the destructive effects of accumulated runoff.

➢ Three major basins connect to dual trunks directing drainage southeasterly towards Boulevard Regulator and Custer Ave CSO.

1. Crew Street – 42” x 84”(24.5 ft²)
2. Lloyd St – 120” x 120” (100 ft²)
3. Connally – 96” x 108” (72 ft²)
Upper Intrenchment Creek
Known Problem Areas – Community Input

Problem areas identified represent issues that still exist post-Department of Watershed interventions
Upper Intrenchment Creek

General Basin Characteristics
• Impervious Upper Basins
• Steep upper portions of basins ≈ 7%
• Shallow pipe/channel slope ≈ 1%

Flood Volumes
• 100 Year - 138 Million Gallons
• 25 Year - 85 Million Gallons
General Basin Characteristics
- Impervious Upper Basins
- Steep upper portions of basins ≈ 7%
- Shallow pipe/channel slope ≈ 1%
- Shallow final outfall elevation = 909

<table>
<thead>
<tr>
<th></th>
<th>Basin 1</th>
<th>Basin 2</th>
<th>Basin 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acreage</td>
<td>198.4</td>
<td>588.8</td>
<td>499.2</td>
</tr>
<tr>
<td>Impervious Acreage</td>
<td>108.3</td>
<td>455.7</td>
<td>266.6</td>
</tr>
<tr>
<td>Pervious Acreage</td>
<td>90.1</td>
<td>133.1</td>
<td>232.6</td>
</tr>
<tr>
<td>Basin Slope</td>
<td>7.6%</td>
<td>7.6%</td>
<td>6.9%</td>
</tr>
<tr>
<td>Channel Slope</td>
<td>1.85%</td>
<td>1.04%</td>
<td>1.02%</td>
</tr>
<tr>
<td>Channel Length</td>
<td>2109</td>
<td>3322</td>
<td>2873</td>
</tr>
<tr>
<td>Time of Concentration</td>
<td>14</td>
<td>20</td>
<td>19</td>
</tr>
<tr>
<td>Minimum basin elevation</td>
<td>922</td>
<td>923</td>
<td>909</td>
</tr>
</tbody>
</table>

Legend
- Combined Sewer Lines
- Pipe Basin Boundaries
Upper Intrenchment Creek

Junction Basins

Flooding Characteristics

- Basin 1 & 2 have a high elevation relative to Basin 3
- Impervious area in higher elevations of Basins 1 & 2 drain quickly and fill the pipe capacity; decreasing Basin 3’s ability to drain
- Until the upper basins fully drain; the lower basin flooding volumes surcharge, accumulate at inlets, and must wait to drain
- This compound effect of velocity, volumes, and elevations causes the flooding
General Basin Characteristics
- High elevation relative to junction elevation
- Large proportion of impervious area compared to overall basin
- Minimal greenspace and impervious disconnects

<table>
<thead>
<tr>
<th></th>
<th>Basin 2</th>
<th>Summerhill</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acreage</td>
<td>588.8</td>
<td>96</td>
</tr>
<tr>
<td>Impervious</td>
<td>77.4%</td>
<td>84.5%</td>
</tr>
<tr>
<td>Impervious Acreage</td>
<td>455.7</td>
<td>81.1</td>
</tr>
<tr>
<td>Pervious Acreage</td>
<td>133.1</td>
<td>14.9</td>
</tr>
<tr>
<td>Basin Slope</td>
<td>7.6%</td>
<td>7.2%</td>
</tr>
<tr>
<td>Channel Slope</td>
<td>1.04%</td>
<td>1.43%</td>
</tr>
<tr>
<td>Channel Length</td>
<td>3322</td>
<td>929</td>
</tr>
<tr>
<td>Time of Concentration</td>
<td>20</td>
<td>13</td>
</tr>
<tr>
<td>Minimum basin elevation</td>
<td>923</td>
<td>932</td>
</tr>
<tr>
<td>Pipe Outfall Elevation</td>
<td>909</td>
<td>909</td>
</tr>
</tbody>
</table>

Legend
- Combined Sewer Lines
- Pipe Basin Boundaries
- Summerhill Basin Limit
Upper Intrenchment Creek

Recommended Approach
- Reuse, Infiltrate, Slow, & Store upper watershed
- Optimize basin junctions and elevations
- Restore lower basin ecology and flow patterns

Flood Volumes
- 100 Year - 138 Million Gallons
- 25 Year - 85 Million Gallons

Goal: To holistically manage volumes

Legend
- Combined Sewer Lines
- Pipe Basin Boundaries

![Map of Upper Intrenchment Creek with volume management](image-url)
Questions?
Upper Intrenchment Creek

General Basin Characteristics
- Impervious Upper Basins
- Steep upper portions of basins ≈ 7%
- Shallow pipe/channel slope ≈ 1%

Flood Volumes
- 100 Year - 138 Million Gallons
- 25 Year - 85 Million Gallons
Upper Intrenchment Creek
Road Network - Dual Purpose Connectivity

Road Drainage Typologies
• Channel Roads – Conveyance
• Spanning Roads - Sponges
• Arterial Roads – Connectivity

Runoff Flood Impact
• Impervious Area* ≈ 108 Acres
• Contribution in 25 year (4hr) Event ≈ 10.2 MG
• Contribution in 100 year (6hr) Event ≈ 14.9 MG

* Excludes existing paver areas
Upper Intrenchment Creek

Road Network - Dual Purpose Connectivity

- **GREEN STREETS**
- **BLUE STREETS**
- **ARTERIES**

GREEN INFRASTRUCTURE

NATURAL LANDSCAPES

BLUE INFRASTRUCTURE

GREEN INFRASTRUCTURE

MULTIMODAL TRANSIT

CAPACITY RELIEF
Upper Intrenchment Creek
Highway Basins

Highway Drainage Characteristics
• Construction required pipe realignment at intersection
• Hydraulic “dams” to upper basin
• Exacerbates crossing shallow pipe/channel slopes

Runoff Flood Impact
• Area ≈ 130 Acres
• Contribution in 25 year (4hr) Event ≈ 12.8 MG
• Contribution in 100 year (6hr) Event ≈ 24.6 MG
Upper Intrenchment Creek
Downtown Basin

General Basin Characteristics
- High elevation relative to junction elevation
- Large proportion of impervious area compared to overall basin
- Minimal greenspace and impervious disconnects
Upper Intrenchment Creek

Central Ave Flooding Area

Central Avenue Basin Characteristics
- High elevation relative to junction elevation
- All Downtown flows and flooding pass through sites and under highway
- Minimal existing buildings, currently surface parking

<table>
<thead>
<tr>
<th>Basin Characteristics</th>
<th>Basin 2a</th>
<th>Basin 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acreage</td>
<td>492.8</td>
<td>588.8</td>
</tr>
<tr>
<td>Impervious</td>
<td>76.7%</td>
<td>77.4%</td>
</tr>
<tr>
<td>Impervious Acreage</td>
<td>378.0</td>
<td>455.7</td>
</tr>
</tbody>
</table>

Runoff Flood Impact
- 25 year (4hr) Event (MG)
 - Basin 2a: 38
 - Basin 2: 45
- 100 year (6hr) Event (MG)
 - Basin 2a: 59
 - Basin 2: 70

Legend
- Combined Sewer Lines
- Pipe Basin Boundaries
- Central Ave Flooding Area
- Channel Roads – Conveyance
- Spanning Roads – Sponge
- Arterial Roads – Connectivity
Upper Intrenchment Creek
Central Ave Flooding Area

Source: Perkin + Will – LCI Plan
Upper Intrenchment Creek
Summerhill Basin Contribution

Summerhill Basin Characteristics
- The largest connected impervious area in the entire basin
- The largest proposed development by land area in the basin
- Centrally located “hub” that can catalyze connective design
- Pipe Outfall Elevation much lower than Ground Elevation
 - Backup will occur in the lower basin when pipe is full

<table>
<thead>
<tr>
<th>Upper Intrenchment</th>
<th>Creek</th>
<th>Summerhill</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acreage</td>
<td>1286.4</td>
<td>96</td>
</tr>
<tr>
<td>Impervious</td>
<td>64.6%</td>
<td>84.5%</td>
</tr>
<tr>
<td>Impervious Acreage</td>
<td>830.6</td>
<td>81.1</td>
</tr>
</tbody>
</table>

Runoff Flood Impact
- 25 year (4hr) Event (MG) 85 7.9
- 100 year (6hr) Event (MG) 138 12
- Minimum basin elevation 909 932
- Pipe Outfall Elevation ≈ 885 909
Upper Intrenchment Creek
Summerhill Basin

Opportunities

1. Promote development wide infiltration.
 - Direct impervious areas to permeable nodes
 - Minimize slopes and velocities to promote retention time
 - Evaluate areas of unsuitable soils and protect soils that can infiltrate
 - If site-based infiltration is not feasible explore regional and reuse option

2. Organize corridors with performative landscape sections
 - Pavers, Narrow infiltration strips & conveyance
 - Bio-swales, vegetated swales, connective GI
 - Storage and infiltration nodes
 - Optimize road corridors to integrate green infrastructure and development overflow connections

3. Optimize outfall to maximize upstream infiltration/storage before conveyance to combined sewer system

Source: Perkin + Will – LCI Plan
Summerhill Redevelopment
Performative Circulation Opportunities

PATHWAYS

STREETS

ARTERIES

GREEN INFRASTRUCTURE

NATURAL LANDSCAPES

GREEN INFRASTRUCTURE

MULTIMODAL TRANSIT

CAPACITY RELIEF
GSU Stormwater Master Plan

- Reducing detention costs for complying with CoA stormwater management requirements
- Allows future development to occur without new stormwater systems construction costs
- Increased developable land area
- Immediate impacts to downstream communities not tied to future development to occurring first
- Reducing runoff pollution and combined sewer overflows to downstream waterways

<table>
<thead>
<tr>
<th>Basin Characteristics</th>
<th>Baseball Field</th>
<th>Stadium Plaza</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acreage</td>
<td>7.75</td>
<td>2.57</td>
</tr>
<tr>
<td>Existing Impervious</td>
<td>100%</td>
<td>95%</td>
</tr>
<tr>
<td>Impervious Acreage</td>
<td>7.75</td>
<td>2.57</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Runoff Contribution</th>
<th>Baseball Field</th>
<th>Stadium Plaza</th>
</tr>
</thead>
<tbody>
<tr>
<td>1” event (MG)</td>
<td>0.20</td>
<td>0.06</td>
</tr>
<tr>
<td>Average per year (MG)</td>
<td>10</td>
<td>3.3</td>
</tr>
<tr>
<td>25 year (4hr) Event (MG)</td>
<td>0.73</td>
<td>0.24</td>
</tr>
<tr>
<td>100 year (6hr) Event (MG)</td>
<td>1.1</td>
<td>0.35</td>
</tr>
</tbody>
</table>
Summerhill Redevelopment
GSU Stormwater Opportunities

By redirecting stormwater from the surrounding district to the baseball field the benefits widen to include:

- Larger landscape footprints & ecological influence
- Centralized treatment system & maintenance
- Resilience to future interruptions to water supplies and drought
- Reducing water costs
Summerhill Redevelopment
GSU & Carter Stormwater Partnership Opportunities

Direct Northeast Quadrant to Baseball Field
- 4.03 Acres of Impervious Surface
- Total Baseball Field Storage Impacts
 - 11.78 Acres
 - 25 year = 1.11 Million Gallons
 - 100 year = 1.67 Million Gallons

Redirect Existing Storm Line to Panther Stadium Plaza
- 9.07 Acres of Impervious Surface
- Total Plaza Storage Impacts
 - 10.58 Acres
 - 25 year = 1.00 Million Gallons
 - 100 year = 1.50 Million Gallons
Summerhill Redevelopment
Summerhill Stormwater Opportunities

ALL WATER FLOWS ARE POTENTIAL RESOURCES

109 Million Gallons of Rainfall per Year
= $3.2 Million Per Year

Business as Usual
Cost of Water: $$$$ – POTABLE DEMANDS
NON-POTABLE DEMANDS – MUNICIPAL WATER SUPPLY

Water Reuse
Cost of Water: $$ – POTABLE DEMANDS
NON-POTABLE DEMANDS – MUNICIPAL WATER SUPPLY

109 Million Gallons of Rainfall per Year = $3.2 Million Per Year

NON-POTABLE DEMANDS
POTABLE DEMANDS
MUNICIPAL WATER SUPPLY

Demands
Supplies

Demands
Supplies

NON-POTABLE REUSE POTENTIAL

American Rivers
RIVERS CONNECT US®
SHERWOOD
DESIGN ENGINEERS
Summerhill Redevelopment
Connective Network to Multimodal Plaza Node

Roadway Characteristics
• New roadways are proposed to connect future blocks and lots
• Walkways and local streets connect the development internally
• Regional streets and arteries cross though the development connecting the surrounding neighborhoods
• Bus Rapid Transit and a multimodal hub is proposed to connect the development to Downtown and the Capital

Roadway Runoff Contribution
• Impervious Area ≈ 7.38 Acres
• Contribution in 25 year (4hr) Event ≈ 700,000 Gallons
• Contribution in 100 year (6hr) Event ≈ 1.0 MG
Summerhill Redevelopment
Connective Network to Multimodal Plaza Node

By aligning sustainable stormwater designs with new roadway/plaza footprints; a connective system of green infrastructure can leverage the impacts of individual blocks and connect the community through infrastructure and ecology.

1. **PERMEABLE PAVERS**: Allow rainwater to percolate directly into the soil to reduce runoff
2. **CISTERNS**: The roof of adjacent buildings can be directed to cisterns for regional reuse and irrigation
3. **STORAGE VAULT**: Rainwater from basins can be collected and detained before entering the city’s sewer system.

Source: Loyola University Chicago
Upper Intrenchment Creek
An Integrated Approach

By integrating the redevelopment of Summerhill, Central Avenue, the roadways that connect the basin, and completed CoA SAGI Projects:

1. Phase 1: 8 GI BMPs - 0.34 MG
2. Phase 2: Media Lot Vault - 5.9 MG
3. Phase 2: 4 mi Permeable Paver Roads + 32 Stormwater Planters - 4.0 MG

over 90% of all runoff in the basin can be managed to mitigate downstream flooding, combined sewer overflows, and ecological degradation.

\[\text{SAGI DWM Projects} = 10.24 \text{ MG} \]
Upper Intrenchment Creek
An Integrated Approach

Recommended Projects

1. Carter:
 - Parcel By Parcel GI
 - Robust implementation of the COA ordinance
 - Road GI Integration
 - Connect to GSU regional stormwater capture
 - Reuse water from GSU regional stormwater capture
 - Active Outfall Controls – Dynamic Valve

2. GSU
 - Baseball Field Central Hub
 - Traditional GI
 - Plaza Permeable Paver Area – Central Hub
 - Road GI Integration
 - Stormwater Master Plan – Incorporate Flows from Carter Dev
 - Active Outfall Controls – Dynamic Valve

3. DWM / Atl-DOT / DPW / MARTA
 - Road/Transit Redevelopment and Stormwater Integration
 - Central Avenue Stormwater/Development Conditions
 - Bus Rapid Transit Plaza
 - Dynamic Valve Retrofit for Media Lot Storage – Impact all events
 - Creative Financing and Environmental Impact Bonds
 - Mapping and Modeling Assistance
 - Data Sharing

4. GDOT
 - Continued Implementation of GI Retrofits
 - Coordinate with CoA on pipe elevations at highway crossings
Upper Intrenchment Creek
Transforming Flooding Impacts into Community Benefits

Source: ONE Architecture
Upper Intrenchment Creek
Transforming Flooding Impacts into Community Benefits

Existing Community Impacts

IMPACT ON VULNERABLE COMMUNITIES

- Uplands
 - Steep Slope
 - High Velocity
- Lowlands
 - Localized Flooding
 - Combined Sewer Surcharge
 - Property Damage
 - Reduced Pipe Capacity

NATURE

- Uplands
 - Erosive Flows
- Lowlands
 - Flat Topography
 - Basin Junctures

INDUSTRY

- Uplands
 - Impervious Area
 - Combined Sewer Flows
- Lowlands
 - Accumulated Runoff
 - Pipe Elevations
 - Inlet Capacity

Proposed Community Benefits

Uplands
- Headwater Stewardship
- Community Education
- Green Jobs

Lowlands
- Flood Plain Maintenance
- Monitoring and Communication

SOCIAL ECOSYSTEM

NATURAL ECOSYSTEM

- Uplands
 - Green Infrastructure
 - Restored Tree Canopy
 - Reduced Urban Heat Island

- Lowlands
 - Stream Restoration
 - Wetland Habitats

INDUSTRIAL ECOSYSTEM

- Uplands
 - Water Reuse
 - Blue Infrastructure
 - Urban Agriculture

- Lowlands
 - Sewer Separation
 - Flood Storage

American Rivers
RIVERS CONNECT US

SHERWOOD DESIGN ENGINEERS